On integral Hodge classes on uniruled or Calabi-Yau threefolds

نویسنده

  • Claire Voisin
چکیده

Let X be a smooth complex projective variety of dimension n. The Hodge conjecture is then true for rational Hodge classes of degree 2n−2, that is, degree 2n−2 rational cohomology classes of Hodge type (n − 1, n − 1) are algebraic, which means that they are the cohomology classes of algebraic cycles with Q-coefficients. Indeed, this follows from the hard Lefschetz theorem, which provides an isomorphism:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mirror Symmetry and Integral Variations of Hodge Structure Underlying One Parameter Families of Calabi-Yau Threefolds

This proceedings note introduces aspects of the authors’ work relating mirror symmetry and integral variations of Hodge structure. The emphasis is on their classification of the integral variations of Hodge structure which can underly families of Calabi-Yau threefolds over P \ {0, 1,∞} with b = 4, or equivalently h = 1, and the related issues of geometric realization of these variations. The pr...

متن کامل

S ep 2 00 0 THE MODULARITY CONJECTURE FOR RIGID CALABI – YAU THREEFOLDS OVER

: We formulate the modularity conjecture for rigid Calabi–Yau threefolds defined over the field Q of rational numbers. We establish the modularity for the rigid Calabi–Yau threefold arising from the root lattice A3. Our proof is based on geometric analysis. 1. The L–series of Calabi–Yau threefolds Let Q be the field of rational numbers, and let Q̄ be its algebraic closure with Galois group G := ...

متن کامل

The Modularity Conjecture for Rigid Calabi – Yau Threefolds over Q

: We formulate the modularity conjecture for rigid Calabi–Yau threefolds defined over the field Q of rational numbers. We establish the modularity for the rigid Calabi–Yau threefold arising from the root lattice A3. Our proof is based on geometric analysis. 1. The L–series of Calabi–Yau threefolds Let Q be the field of rational numbers, and let Q̄ be its algebraic closure with Galois group G := ...

متن کامل

On the Hodge structure of elliptically fibered Calabi-Yau threefolds

The Hodge numbers of generic elliptically fibered Calabi-Yau threefolds over toric base surfaces fill out the “shield” structure previously identified by Kreuzer and Skarke. The connectivity structure of these spaces and bounds on the Hodge numbers are illuminated by considerations from F-theory and the minimal model program. In particular, there is a rigorous bound on the Hodge number h21 ≤ 49...

متن کامل

Closed Form Expressions for Hodge Numbers of Complete Intersection Calabi-Yau Threefolds in Toric Varieties

We use Batyrev-Borisov’s formula for the generating function of stringy Hodge numbers of Calabi-Yau varieties realized as complete intersections in toric varieties in order to get closed form expressions for Hodge numbers of Calabi-Yau threefolds in five-dimensional ambient spaces. These expressions involve counts of lattice points on faces of associated Cayley polytopes. Using the same techniq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008